MOLECULAR TOOLS IN DIAGNOSIS OF TUBERCULOSIS

DM SEMINAR 08 Apr 05

Scope

- Rapid culture methods
- Serological diagnosis
- Nucleic acid based techniques
- Mycobacteriophage based assays
- Applications
- Future directions

Introduction

- Long generation time of the tubercle bacillus ~18-24 hours
- All microbiology reports are delayed ~4-6 weeks
- Inadequate treatment encourages spread of drug resistant strains adding to disease burden in community
- Molecular tools hold promise for future for early diagnosis and drug resistance testing

Rapid culture methods

- BACTEC system
- Mycobact Growth Indicator Tube(MGIT)
- MB/Bac T system
- Septi-chek
- ESP culture system
- Microscopic observation of broth/slide cultures

BACTEC System

- Radiometric method
- ¹⁴C labelled palmitic acid added to liquid 7H12 medium
- Detects MTB by metabolism rather than growth
- ¹⁴CO₂ produced detected by specialized eqpt
- Growth index(GI) measured
- Results available in 7-14days (87-96%)

Ramachandran et al, Ind J TB 2003

MGIT

- Automated system
- Capable of analyzing 960 specimen
- Metabolism of MTB produces O₂
- Fluorescence of dye with oxygen measured
- Results available in 7-14 days
- Cost effective for high load microbio-labs

MB/Bac T system

- Automated
- Colorimetric detection of CO₂
- Slightly longer time (10-15 days)
- Prone to contamination

ESP Myco system

- Changes in gas pressure in a sealed culture broth bottle by gas production/consumption
- Reliable & less labour intensive
- Used in combination with solid medium not stand alone

Microscopic observation of broth culture

- Rapid detection method
- Relatively inexpensive
- As quick
- Equal sensitivity and specificity
- Suitable for endemic countries with high disease burden

Identification of isolates

- Standard biochemical tests
- Radiometric methods
- Enzymatic/colorimetric method
- Lipid analysis- HPLC
- Mycobacteriophage based
- DNA probes
- Ribosomal RNA probes
- Gene amplification PCR/TMA/SDA

Serologic tests

Serologic tests

- Applied for variety of cases incl smear +ve pulmonary tuberculosis to smear & culture negative EPTB at inaccessible body sites.
- ELISA based methods for the detection of mycobact antigen in body fluids
- Most often for the diagnosis of neurological and pleural tuberculosis

Serologic tests

- Positive test may perhaps "rule in" a diagnosis, but a negative test cannot "rule out" a diagnosis of tuberculosis
- Used as supportive evidence along with conventional tests.
- Some workers have advocated testing for a panel of antigens rather than single antigen.

Limitations - Serologic tests

- Affected by BCG vaccination, previous infection and environmental NTM exposure
- Persistence of antibodies leads to difficulty in distinguishing between infection and disease
- Low sensitivity in smear negative, HIV co-infection, and disease endemic countries

Antigen detection tests

- Lipoarabinomannan
- Extracted glycolipids
- Purified protein derivative
- 38 Kda Ag
- 45/47 Kda Ag
- Cord factor(trehalose dimycolate)

Antigen based tests

- Capture/ Sandwich ELISA
- Monoclonal Ab
- Latex agglutination
- Reverse passive hemagglutnation
- Antigen level 3-20 ng /ml can be detected
- Sens: 40-50 % spec: 80-95%
- Sputum, pleural ,CSF,urine

Recombinant Antigen

Antibody based tests

Name of the assays	Antigen used
MycoDot (Dot-blot)	Lipo arabino mannan (LAM)
Detect-TB (ELISA)	Recombinant protein Peptide
Pathozyme Myco (ELISA)	38 kDa (recombinant Ag) and LAM
Pathozyme TB(ELISA)	38 kDa (recombinant)
Antigen A60 (ELISA)	Antigen – 60
ICT diagnostics (membrane based)	38 kDa (recombinant)

Ramachandran et al, Ind J TB 2003

Newer tests

 Mycobact Superoxide dismutase Ab: has high PPV(93-94%) useful in low prevalence countries as compared to endemic areas (77-88%)

Chan et al Tuberc lung disease 2000

- Tests to find antibody associated with active disease than infection are being evaluated
 - Insta test TB
 - TB STAT PAK

Ramachandran et al, Ind J TB 2003

Skin tests

- TB MPB 64 patch test- Specific MTB antigen, becomes positive in 3-4 days and remains for a week
- Sens 98.1% and spec 100%
- Requires further evaluation

Nakamura et al Int J Tuberc lung Dis 1998

Gamma Interferon assay

- QUANTIFERON-TB assay
- Specific MTB Ag ESAT6, CFP are used to stimulate mononuclear cells in vitro and IFN gamma is measured by ELISA
- Useful to differentiate TB disease from NTM infection
- Not affected by BCG vaccination *Streeton et al, Int J Tub Lung dis 1998*

T Cell based tests

- ELISA based test compared with TST
- To detect T cells specific for MTB antigens(absent from NTM,M Bovis)
- More sensitive than TST for detecting latent infection among 535 school students and was unaffected by BCG vaccination

Ewer et el Lancet 2003

ELISPOT assay

- Enzyme linked immunospot assay
- Study of 293 S African children with suspected TB were subjected to TST, microbiologic and ELISPOT test
- Had sens ~83% compared to 63 % of TST
- Sens remained high even with HIV co-infection, malnutrition, which affect the tuberculin skin test.

Susan et al Lancet 2004

Phage based assays

Phage amplified biologic assays

- Pha B assay :for protection of phage by mycobacteria in clinical samples
- virucidal solution added to kill extracellular phages
- intracellular phages replicate and lyse the MTB and new phages are released
- Quantified by counting plaque on culture of M smegmatis

Fast plaque Assay

- Commercial assay
- Direct detection of MTB in sputum and urine samples
- Fast assay : reduces the detection time to 1 day from sample collection
- Suitable for use in resource poor countries Marei AM et al J Med Microbiol 2003

Luciferase reporter phage assay

- LRP are phages carrying firefly Luciferase gene which produce light in presence of luciferin(substrate) and ATP.
- Infect viable MTB and sample releases light detected by luminometer / photograph
- Species identification and drug resistance testing can be carried out with results within 54 hours

Nucleic Acid Amplification Techniques

NAT

- Polymerase chain reaction
- Transcription mediated amplification
- Strand displacement amplification
- Nucleic acid sequence based amplification
- Ligase chain reaction
- Q beta replicase amplification
- Branch DNA amplification

PCR

- Synthesis of d s-DNA by hybridization of oligonucleotides to target s s-DNA
- Uses thermal cycler to denature the target DNA
- Thermostable polymerase for DNA amplification
- Repeated cycles by varying temp for primer annealing(70-72 C) and denaturation(94-96 C)
- Amplified product are then detected by southern blotting and fluorescent/radiolabelled probes hybridization

PCR

Exponential amplification

PCR

- PCR is capable of detecting even 1-10 organism in clinical specimen(ideal condtn)
- Amplification leads to rise in nucleic acid to 10⁶⁻⁷ copies in few hours(25-30 cycles)
- Results are available within hours rather than days

Targets for PCR

- **IS6110**
- IS1081(nested PCR developed by CDFD)
- 65 kDa protein gene
- 16S r DNA gene
- MPB64 gene
- 35 kDa protein gene
- TRC 4

Types of PCR

- DNA PCR
- RT PCR
- NESTED
- INVERSE
- IN SITU

COMMERCIAL OR IN HOUSE

Indian PCR tests

- CDRI, Lucknow
- AIIMS,New Delhi

These assays have been found to be of acceptable sensitivity and specificity for detection of MTB in sputum

Katoch VM , Ind J Med Res 2004

• CDFD, Hyderabad –modified IS1081 nested PCR has shown promising results.
Studies :Sputum PCR

Study	No. of Specimens	Prevalence %	Sensit %	ivity	Specifi %	icity	PP\ %	1
			С	R	С	R	С	R
Abe ³	135	28	81,3	84,2	94.2	300	81,3	84,0
Beige ⁴	103	47	98.0		70,0		75.0	
Clarridge ⁵	>5000	4.4	83.6	86,1	98.7	100	94,2	98,4
Miller ⁶	750	21	78.2	92,3				100,0
Nolle ⁷	3J3	40	91,0		100,0		100.0	
Shawar ⁸	384	18	74.0	80.0	95.0	97	77,0	86,0
Yuen ⁹	519	8	96.0		85.0	100		

Rattan A Ind J TB, 2000

Studies :Sputum PCR

Study	PCR Sensitivity (%) in different studies			
	Overall	Smear+ Culture +	Smear- Culture +	
Abe ³	84	96	50	
Clarridge ⁵	86	94	62	
Miller ⁶	92	98	78	
Nolte ⁷	91	95	57	
Yuen ⁹	96	100	92	

Rattan A Ind J TB, 2000

Limitations of PCR

- False positive: due to contamination ,carry over from previous test
 - strict discipline among lab personnel
 - proper technique
 - use of In Situ PCR
- False Negative:
 - proper sample collection/ preparation
 - presence of inhibitors to Taq polymerase

Amplicor^R MTT

- Roche Amplicor^R DNA PCR based test
- Specimen preparation, DNA PCR amplification, hybridization, detection
- Approved by FDA for detection of MTB in smear + resp samples(not recd ATT for > 7 days or within 12months)
- Results are available in 6.5 hours
- Sens and specificity of 91.9/99.8% compared to 95.3/100% for culture

-ATS work shop, AJRCCM 1997

Nucleic acid Amplification

Isothermal procedures –work without thermal cycler

- Strand displacement amplification (SDA)
- Transcription mediated amplification(TMA)
- Q beta replicase amplification(QBR)

TMA

- Transcription mediated amplification
- Sample preparation- releases r-RNA
- Reverse transcriptase copies the RNA target
- RNA polymerase mediated amplification-RNA amplicon
- Hybridization protection assay detects RNA amplicon.

Amplified MTD

- Geneprobe^R Amplified mycobacterium tuberculosis direct test –based on TMA
- Approved by FDA for detection of MTB in smear + resp samples(not recd ATT for > 7 days or within 12 months)
- No statistically significant difference in sens and spec in resp (86.6/96.4%) and non resp samples (93.1/97.7%)

ATS work shop, AJRCCM 1997

SDA

- Isothermal synthesis of ss- and dsDNA.
- Sample containing target DNA treated with restriction enzyme *Hincll*
- Primer annealing extension & displacement of strands by E coli DNA polymerase I.
- Sense and antisense strands act as template for further amplification

Gene Amplification Methods

Table I. Comparative sensitivity of DNA, rRNA targeting probes and gene amplification assays for Mycobacterium tuberculosis

Technique	Sensitivity	Application
DNA targeting probe ^{1413,17}	10,000-00,000 copies	Identification of isolates
rRNA targeting probe ^{2,14,15,17}	100-1000 copies	Identification of probes; also limited application on clinical specimens
Gene amplification assays ²⁷⁻²⁹	1-10 copies	Direct application on clinical specimens; also used to identify isolates by PCR-RFLP/sequencing

Katoch VM , Ind J Med Res 2004

Commercial available NAT

Sl.No.	Method	Target
1	PCR	IS 6110 65 kDa
2	TMA	16 S r RNA
3	SDA	IS 6110
4	NASBA	16 S r RNA
5	b DNA	As for PCR
6	LiPA	As for PCR

Applications

MTB resistance detection

- Detection of point mutation ,early detection of resistant strains from cultured isolates/ clinical specimen
- Results are available within hours to days as compared to weeks with conventional tests
- Helps clinician in initiating appropriate drug therapy and prevents further transmission of resistant strains

Drug susceptibility testing

Roth A et al E Resp J,1997

Drug resistant MTB

•	Drug	Mutant gene	Frequency
•	Rifampicin	rpo B	~96%
•	INH	kat G/ inhA	75-85%
•	Sreptomycin	rpsL	65-75%
•	PZI	pnc A	~70%
•	Ethambutol	emb B	~ 70%

Drug Resistant MTB

- METHODS
 - DNA Sequencing
 - Line probe assay
 - PCR based assay
 - Single strand conformation polymorphism(SSCP)
 - Mycobacteriophage (LRP)assay

Sputum negative PTB

- Sensitivity of NAT is much more in smear +ve cases(95-96%) than smear -ve cases(48-53%)
- FDA panel has approved use of NAT in respir specimen both smear +ve and –ve cases from patients with suspected TB
- Clinically Intermediate /high suspicion of TB sensitivity 75-88% and spec was 100%

ATS statement ,AJRCCM 2000

Extrapulmonary TB

- Paucibacillary tuberculosis- conventional methods are insensitive
- Histopathology tissue may be unaccessible or non representative and nonspecific
- Potential for molecular tools is tremendous for diagnosis of EPTB

Katoch VM , Ind J Med Res 2004

Conventional methods : EPTB

Variable	Pleural fluid	Pericardial fluid	Cerebrospinal fluid	
Smear microscopy	< 10%	< 1%	5-37%	
Mycobacterial culture	12-70%	25-60%	40-80%	

Sharma SK et al I J TB 2004

Extra-pulmonary TB

- CNS TB:PCR has 50-70% positivity compare to CSF AFB /culture which has 5-20%
- Ocular :confirm diagnosis in 50-70% (aqueous /vitreous)
- Cutaneous :positivity 50-60% compared to culture

Katoch VM, Ind J Med Res 2004

Extra-pulmonary TB

- Lymph node TB:positivity rates varying from 40-90%
- Bone/Genitourinary TB:useful in confirming diagnosis

Katoch VM, Ind J Med Res 2004

Amplicor^R in TBM

- Compared with direct ZN stain of smears, radiometric culture for MTB and clinical and CSF findings.
- More sensitive(60%) than the combination of ZN stain smears and radiometric culture for MTB
- Rapid and highly specific(100%) diagnostic test for TBM.

Bonington et al, J Clin Microbiol 1998

Serologic & Mol tools-EPTB

Diagnostic method	Pleural fluid	Cerebrospinal fluid	
ELISA:			
Detection of antibody in the fluid			
Sensitivity	$0.22 - 0.68^{3}$	$0.60 - 0.90^{9}$	
Specificity	0.90 -1.00°	$0.58 - 1.00^{9}$	
Detection of antigen in the fluid			
Sensitivity	0.48 - 1.00⊧	$0.61 - 0.79^4$	
Specificity	0.98 - 1.00*	1.00^{d}	
Molecular methods :			
Polymerase chain reaction			
Sensitivity	0.22 - 0.81*	0.50 - 0.90	
Specificity	$0.77 - 1.00^{\circ}$	1.00^{t}	

Sharma SK et al I J TB 2004

RFLP

- Restriction fragment length polymorphism
- Restriction endonucleases will cut the ds- DNA at specific recognition sites so fragments of different lengths result
- Gel electrophoresis followed by southern blotting to produce patterns which are Genomic or DNA Fingerprints

IS6110

- Insertion sequence(IS) are 1355 base pairs in size and are randomly distributed throughout the genome of MTB
- They are present in varying numbers from 0-30 copies
- RFLP analysis of the distribution of the insertion sequence IS6110 in different strains
- Large data bases of IS6110-based genotypes are available (DNA Fingerprints)

IS6110 RFLP

- Strains with fewer than 6 IS6110 insertion sites have limited polymorphism and require other methods of genotyping
- Requires sufficient quantity of DNA and are done on cultured isolates after several weeks

MIRU

- Mycobacterial interspersed repeat units
- MTB genome has repeat units some identical some variable
- MIRU genotyping characterizes the type of repeats into 12 independent MIRUs
- Performed directly on culture(no DNA purification)
- Detected by PCR followed by electrophoresis Barnes P, N Engl J Med 2003

MIRU

- Discriminatory power like IS 6110
- Automated analysis
- Digital results which can be catalogued on computer database
- Website has been created for updating the patterns worldwide

IS6110 RFLP

Epidemiologic tool

- Out break of TB (Clustering)
- DR Strains M.Tuberculosis
- Recent infection vs reactivation
- Lab cross contamination

Lab Cross Contamination

Roth A et al Euro Resp J 1997

- MTB genome has direct-repeat locus which
 - contains 10 to 50 copies of 36-bp direct repeat
- Separated from one another by spacers that have different sequences.
- Spacer sequences between any two specific direct repeats are conserved among strains.

- Strains differ in terms of the presence or absence of specific spacers, the pattern of spacers in a strain can be used for genotyping (spacer oligonucleotide typing)
- Advantages:

-Small amounts of DNA are required -performed on clinical samples or on strains of *M. tuberculosis* shortly after their inoculation

Strain	Spoligotype
M. tuberculosis H37Rv M.bovis BCG M. tuberculosis "Beijing"	
M. tuberculosis: "Manifa" M. tuberculosis "East African- indian "	
M. tuberculosis "seel" M. tuberculosis subsp. caprae M. tuberculosis subsp. caneti M. microti	

Future of NAT

Molecular beacons

• DNA microarray/DNA chips

• FRET probes(fluorescence resonance energy transfer)

Clinical Decision Algorithm

Roth A et al Euro Resp J 1997
Conclusions

- Molecular methods have a role in early diagnosis of Tuberculosis
- Rapid identification & typing of MTB from cultured isolates and directly from clinical specimen
- Diagnosis of drug resistant mutants
- Tests should be used in conjunction with conventional tests and interpreted with overall clinical picture