Dr. Gyanendra Agrawal Senior Resident Dept of Pulmonary Medicine

FUNCTIONAL ASSESSMENT IN PULMONARY MEDICINE

Clinical Exercise Testing

- Increasingly being used in clinical practice:
 - Impact in the clinical decision making process
 - Resting cardiopulmonary measurements do not provide a reliable estimate of functional capacity
- Provide objective measures for diagnosis, treatment and prognosis

Types of Clinical Exercise Testing

- 6-minute walk test
- Shuttle walk test
- Exercise induced bronchoconstriction
- Cardiac stress test
- Cardiopulmonary exercise tests

Indications of 6MWT

- Before-and-after treatment comparisons
 - Lung resectⁿ, Tx
 - COPD, rehabilitatⁿ
- To measure functional status
 - HF, COPD, PVD
 - Cystic fibrosis
- To predict hospitalization and death
 - HF, COPD
 - Pulm HTN

Safety

- Absolute CI
 - USA or heart attack during previous month
- Relative Cl
 - Resting tachycardia (HR 120 beats/min) or
 - Uncontrolled hypertension
- Physician need not be present
- Technician should be certified in CPR

Performing 6MWT

- Should be performed indoors along long, flat, straight corridors (30 m)
- Instruct and demonstrate properly
 - Walk AS FAR AS POSSIBLE for 6 minutes, but don't run or jog
 - Permitted to slow down, to stop, and to rest as necessary
 - May lean against the wall while resting
- Standard phrases for encouragement
 - "You are doing well"
 - "Keep up the good work"
- If practice test is done wait for ~1 hr, and report the highest 6MWD

Am J Respir Crit Care Med 2002;166:111–117

Variables Measured

- 6MWD
- Secondary measures include
 - Fatigue and dyspnea, measured by modified Borg or VAS
 - Arterial O₂ saturation
- Optimal reference equations from healthy population not yet available
- 6MWD range from 400 to 700 m
- Statistically significant mean increase in 6MWD in a group of COPD patients- 70 m

Am J Respir Crit Care Med 1997;155:1278–1282 Respir Care 2003;48(8):783–785

Interpretation

- A low 6MWD is nonspecific and non-diagnostic
- The following tests may then be helpful:
 - Pulmonary function
 - Cardiac function
 - Ankle—arm index
 - Muscle strength
 - Nutritional status
 - Orthopedic function
 - Cognitive function

WHY 6MWT ???

Walk tests

- Time based tests
 - 2MWT, 5MWT
 - 6MWT, 9MWT, 12MWT
- Fixed distance tests
 - 100 m, Half mile
 - 2 km walk test
- Velocity determined tests
- Controlled pacing incremental tests
 - Incremental shuttle walk test

6MWT on treadmill

- Proposed when long corridor not available
- Advantages:
 - Continuous cardiovascular and oximetry monitoring
 - Ease of supplemental O₂ device carriage
- Disadvantages:
 - Difficult in elderly- coordination problems
 - Not interchangeable with conventional 6MWT (14% less 6MWD)
- If desired, an endurance constant work protocol at 0% elevation and steady speed is preferable

Shuttle walk test

- A walk test based on the 20m shuttle run test
- Measures maximal distance walked by the patient at a pace set by audio signals
- Requires patients to walk at increasing speeds up and down a 10m course
- Speed of walking is increased every minute (by 0.17 m/s)

Heart 1996;75:414-418

Shuttle walk test

- Terminated when pt becomes too breathless to maintain the required speed or if he fails to complete a shuttle in the time allowed
- Incremental maximal symptom-limited test
- Correlates better with VO₂max than 6MWT
- Disadvantages:
 - Does not reflect daily activities
 - Greater risk of complications than CPET (as no ECG)

Endurance SWT

- Walk test for the assessment of endurance capacity of individuals
- Work rate of ESWT is set at 85% of maximal capacity which is obtained from a prior ISWT
- Constant work load field walking test which complements ISWT
- Field equivalents of the symptom limited laboratory exercise test
- While ISWT measures maximal capacity, ESWT examines the ability to use that capacity

Field tests

- Shuttle walk
 - Better correlates VO2
 - Incremental
 - Maximal
- 6MWT
 - Easier, reliable
 - Safer
 - Submaximal
 - Self paced

- Measurement properties of the 6MWT have been the most extensively researched
- 6MWT is easy to administer, better tolerated, more reliable and responsive than 12MWT and 2MWT
- 6MWT more reflective of the requirements of activities of daily living
- Limited evidence on measurement properties of SPWT, SWT
- 6MWT should be the test of choice

Exercise-Induced Bronchoconstriction Test

- Used to determine the presence of airway hyperreactivity
- FVC and FEV₁ measured at baseline and at 5, 15 and 30 min post exercise
- Positive test is reflected as a reduction of FEV₁ or FVC of 15% after exercise
- EIB observed in 70% to 80% of patients with clinically recognized asthma
- Less sensitive than methacholine challenge test

Cardiac Stress Test or Graded Exercise Test

- Most widely used clinical exercise testing modality in the United States
- Used primarily for the diagnosis of CAD and arrhythmias
- Performed on a treadmill- Bruce protocol is the most popular
- Single most reliable indicator of exercise-induced ischemia is ST-segment depression

CARDIOPULMONARY EXERCISE TESTING

CPET

- (1) Objective determination of functional capacity & impairment
- (2) Evaluation of the mechanisms of exercise limitation
- (3) Differentiation between heart and lung disease
- (4) Diagnosis of the causes of exercise intolerance and dyspnea on exertion
- (5) Monitoring of disease progression and response to Rx
- (6) Determination of the appropriate intensity needed to perform prolonged exercise
- (7) Exercise prescription for cardiopulmonary rehabilitation

CPET

Global assessment

- Pulmonary
- Cardiovascular
- Hematopoietic
- Neuro
- Psychological
- Skeletal muscle systems

Field tests

<u>CPET</u>

- Lack of reference values
- Absence of physiological measures
- Cannot differentiate system involvement

- Provides global assessment
- Can pinpoint system involvement
- Relatively noninvasive
- Dynamic physiologic overview
- Permits evaluation of both submaximal and peak exercise responses

When to perform

Clinical decision

- History, physical examⁿ
- CXR
- ECG
- PFT's

Clinical Indications

- Evaluation of exercise intolerance and unexplained dyspnea
- Cardiovascular diseases
- Respiratory diseases / symptoms
- Preoperative evaluation- lung resection, LVRS
- Pulmonary rehabilitation
- Impairment / disability assessment

Exercise Intolerance

- Assessment of exercise capacity
- Pathophysiologic basis of exercise limitation
- Contribution of cardiac / respiratory disease
- Symptoms disproportionate to routine tests

Cardiovascular & Pulmonary diseases

- Cardiovascular disease
 - Heart failure
 - Cardiac transplantation
 - Cardiac rehabilitation
- Respiratory disease
 - COPD, ILD, cystic fibrosis
 - PVD
 - For oxygen prescription

Preoperative evaluation

- Lung cancer resection surgery
 - VO₂ peak <50-60% predicted is associated with higher rates of morbidity and mortality after lung resection
 Am J Respir Crit Care Med 1999;159:1450–1456

LVRS

- Currently investigational
- National Emphysema Treatment Trial- the maximal work rate derived from CPET as its primary physiologic outcome parameter

Am J Respir Crit Care Med 2003;167:211-77

Contraindications

Absolute CI

- AMI (3-5 days) or USA
- Uncontrolled arrhythmia with HD compromise
- Syncope
- Respiratory or Heart failure
- Active endocarditis or myocarditis
- Severe AS
- PE or lower limb DVT
- Uncontrolled asthma

Relative CI

- Left main coronary stenosis
- Moderate stenotic valvular heart disease
- Severe untreated HTN (>200/120)
- Tachy or bradyarrhythmia/ AV block
- Hypertrophic cardiomyopathy
- Significant PAH
- Advanced pregnancy
- Orthopedic disease

Rate of death during testing 2-5/ lakh tests

Protocol

History, PFT, ECG Maximal incremental exercise on cycle ergometer Cardiopulmonary measurements 3 min resting 3 min unloaded cycling 10 min incremental/ Ramp Exercise (5-30 W/min) 10 min recovery (3 min unloaded cycling) **ECG** monitoring

Data collected

- Breath by breath analysis of VO₂, VCO₂ and V_E
- Electrocardiography
- Noninvasive blood pressure
- Pulse oximetry
- Arterial blood gas
- Invasive arterial BP

- sometimes

ABG monitoring

- Anaerobic threshold- Lactic acid measurements
- COPD / ILD / PVD (Significant desaturation)
- Oxygen prescription
- Accuracy of oximetry reduced when SpO₂
 <88%

Variables measured by CPET

Variables	Noninvasive	Invasive
Work	Work rate	
Metabolic	VO ₂ , VCO ₂ , RER, AT (A.K.A. LT)	Lactate
Cardiovascular	HR, HRR, ECG, BP, O ₂ pulse	
Respiratory	V_{E} , V_{T} , VR , $PETO_{2}$, $PETCO_{2}$	
Pulmonary gas exchange	SpO_2 , V_E/VCO_2 , V_E/VO_2	SaO ₂ , PaO ₂ , P(A-a)O ₂ V _D /V _T
Acid-base		pH, PaCO ₂ , HCO ₃
Symptoms	Dyspnea, leg fatigue, chest pain	

Oxygen Uptake (VO₂)

- Best available index for the assessment of exercise capacity
- VO₂ max: when plateau is achieved
- VO₂ peak: VO₂ at max exercise, but no plateau
- Global assessment of respiratory, cardiac, blood
 & muscle function
- >84% predicted normally
 - Resting VO₂: 3.5 ml/kg/min (250 ml/min)
 - VO₂ max: 30-50 ml/kg/min (15 times basal)
 - Trained athletes: 80 ml/kg/min

Oxygen Uptake (VO₂)

- Decreased slope:
 - Inadequate O₂transport/ utilization
 - Disease of heart, lung or circulation
 - Musculoskeletal disease
 - Poor effort

CO₂ Output (VCO₂)

- CO₂ output depends on
 - Cardiac output
 - CO₂ carrying capacity
 - Tissue exchange
- CO₂ output more strongly dependent on ventilation than VO₂
- Resp exchange ratioVCO₂ / VO₂

Anaerobic Threshold

- Lactate threshold or ventilatory threshold
- Estimate of onset of metabolic acidosis during exercise (caused predominantly by increases in lactic acid)
- Indicates the upper limit of exercise that can be performed aerobically
- 50%-60% VO₂max in average persons (wide range of normal 35-80%)

Anaerobic threshold

- Noninvasive
 - V-slope method
 - Ventilatory equivalents method
- Invasive
 - Arterial lactate
 - Arterial bicarbonate

Anaerobic threshold

 Helpful as an indicator of level of fitness and to monitor the effect of physical training

 Reduced in a wide spectrum of clinical entities— so limited discriminatory value

Cardiac parameters

- CO increases linearly with VO₂ and does not vary with training- best indicator of cardiac function
- Initial ↑ in CO by ↑ HR and SV, later exclusively by
 ↑ HR
- Predicted maximum HR = 210 (age × 0.65) or 220 - age
- Normally, max HR >90% age predicted
- HRR = Age predicted max HR max HR achieved
- Normally, HRR <15 bpm

Oxygen pulse

- VO_2 / HR (n >80%)
- Amount of oxygen extracted per heart beat
- Reflects the product of SV & oxygen extraction
- Determined at plateau, when max oxygen extraction and SV have been reached

Blood Pressure Response

- Decrease SVR, increase SBP, and typically normal DBP
- If blood pressure does not increase or declines
 - Cardiac limitation
 - Abnormality of sympathetic system
- Fall in BP during test- indication of termination

Ventilatory reserve

- Denotes potential ventilation in L that could be increased during exercise
- Difference or ratio between max minute ventilation (VEmax) and MVV
 - VEmax/MVV × 100 < 75%</p>
 - MVV VEmax >11 L
- MVV can be measured directly or calculated (FEV $_1 \times 40$)
- Pulmonary diseases have reduced reserve
- Cardiac diseases have normal reserve

VE and VO₂

- Relation complex
- Usually nonlinear

VE and VCO₂

- Usually linear relationship
- Slope indicates
 ventilatory equivalent
 for VCO₂

Ventilatory equivalent for VCO₂

- VE/ VCO₂ denotes amount of VE to eliminate 1L of VCO₂
- Noninvasive measurement of efficiency of ventilation
- Measured throughout but reported at AT (near nadir) when PaCO₂ is steady, to avoid the effect of hyperventilation acidosis
- Normally <34
- Suggests hyperventilation when a/w \downarrow in PETco₂ and increased V_D/V_T when \uparrow in PETco₂

End tidal PO₂ and PCO₂

- Isocapnic buffering: the period of increasing PETo₂ with relatively stable PETco₂
 - Buffering of lactate (after AT) ↑ production of CO₂ and ventilation ↑ proportionately
 - So the alveolar & arterial
 CO₂ do not change
 - With further accumulation of lactate- VE ↑ and CO₂ ↓

CPET responses at peak exercise

	Resp COPD/ILD	Cardiac	PVD	Deconditioned
VO ₂ max	Decreased	Decreased	Decreased	Decreased
AT	N/ Decreased	Decreased	N/ Decreased	N/ Decreased
HRR	Increased	Decreased	N/ Decreased	N
VE/MVV	Decreased	Normal	N	N
P(A-a)O ₂	Increased	Normal	Increased	N

Interpretation: Integrative approach

- Review clinical and laboratory information
- Identify key variables: VEmax ,MVV, HR, SaO₂
- Compare exercise responses with appropriate normal reference values
- Evaluate cause of exercise limitation
- Patterns of exercise responses

Results are rarely clear-cut Interpretation may be challenging

Cardiac disease

- Reduced work rate and VO₂peak
- Low AT (early onset metabolic acidosis)
- Low oxygen pulse
- High HR response (decrease HRR)
- Ventilatory reserve normal
- No desaturation

COPD

- Depends on stage of disease
- Reduced peak work rate and VO₂peak
- Reduced ventilatory reserve
- Peak HR reduced (significant HRR)
- Noninvasive AT : ABG may avoid false positive
- Reduced O₂ pulse- hemodynamic consequences of dynamic hyperinflation
- Hypoxemia- especially in emphysema (~DLco)
- Hypercapnia (V/Q abnormalities and reduced drive in severe cases)

ILD

- Reduced peak work rate and peak VO₂
- AT (N)/ reduced
- Reduced ventilatory reserve
- Abnormal breathing pattern (high f, low V_T)
- Significant hypoxemia (~resting DLco)
- Wide P(A-a)O₂ gradient
- Low HRR- coexisting cor pulmonale

Pulmonary vascular disease

- Reduced peak work rate and peak VO₂
- AT reduced (early metabolic acidosis)
- Reduced oxygen pulse
- Ventilatory reserve normal
- HRR usually near normal (low- cor pulmonale)
- Significant hypoxemia
- Wide P(A-a)O₂ gradient

Deconditioning

- Reduced peak VO₂ (lower limit of N)
- Normal or low AT
- Reduced O₂ pulse
- Normal peak HR (no HRR)
- Normal ventilatory reserve
- Diff to distinguish from early cardiac disease history and response to training
- May be coexistent with chronic diseases

Conclusions

- Exercise tests provide reliable estimate of functional capacity and activities of daily living
- Amongst walk tests 6MWT is test of choice
- CPET provide global assessment of various systems involved in exercise
- Interpretation to be done using integrative approach