PREOPERATIVE PULMONARY ASSESSMENT FOR LUNG RESECTION SURGERY

Dr. Devendra S. Dadhwal

SR

Pulmonary & Critical Care Medicine PGIMER

Introduction

- Lung Resection
- CA lung
 - One of the main indication
 - Prognosis of CA lung is poor without surgical resection
 - Only 15-25% found operable at the time of presentation in the western world
 - Only 6% found operable at the time presentation in South Africa*
- Other than CA lung
 - Bronchiectasis
 - Hemoptysis
 - Recurrent LRTI

^{*}Nanguzgambo et al, J Thorac Oncol 2011;6(2):343-50

COMMON PROCEDURE

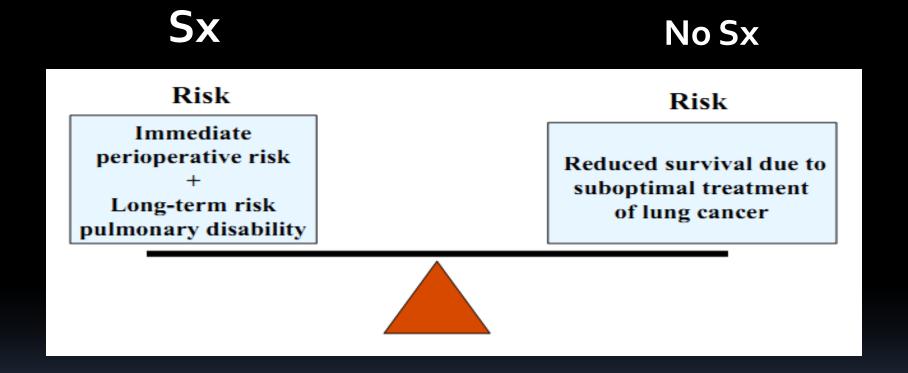
- Pneumonectomy
- Lobectomy
- Wedge Resection
- Segmentectomy

Post Resection: Physiological changes

- Impairment of Ventilatory responses to:
 - CO₂ at all level of work
 - Hypoxemia during heavy exercise
 - Due to V/Q heterogeneity
 - Diffusion limitation
- Reduce
 - Cardiac out put
 - VO₂
 - PaO₂

Remaining lung

- Increase Diffusion Capacity:
 - As removal of 42% lung(Left pneumonectomy)
 causes DLCO decrease by 30% only*
 - It is due to recruitment of new vessels by
 - PHT
 - Expansion of remaining lung


Changes in Lung Volume

- Pneumonectomy:
 - FEV1 reduced by 34-36%
 - FVC reduced by 36 40%
- Lobectomy:
 - FEV1 reduced by 9 17%
 - FVC reduced by 7 11%

Preoperative assessment to decide

- (A) Risk are so high that Sx should not be performed?
 - Perioperative mortality
 - Post operative complication
- (B) What will be post operative quality of life?
 - Will post operative PFT sufficient to allow reasonable quality of life

Balancing risk by preoperative assessment

Poor lung function alone rule out Sx in > 37% pt who presented with anatomically resectable disease.

MORTALITY RATES

- Pneumonectomy : 6.8%
- Bi-lobectomy: 4.4 %
- Lobectomy: 3.9 %
- Lesser Resection : 1.4 %

Damhuis et al, Eur Respir J 1996; 9:7-10

Post-lobectomy complications

	All patients	Length of stay <14 days	Length of stay >14 days	Significant for LOS p value
n	4,979	4,628 (93%)	351 (7%)	
Pneumonia	4%	3%	28%	< 0.0001
Atelectasis	4%	2%	21%	< 0.0001
ARDS	1%	0.5%	11%	< 0.0001
Myocardial infarction	0.4%	0.2%	3%	<0.0001
Ileus	1%	0.6%	18%	< 0.0001
Renal failure	1.4%	0.9%	9%	< 0.0001
Pulmonary embolus	0.3	0.3%	2%	0.02
Atrial arrhythmias	12%	11%	27%	0.07
Air leak >5 days	10%	8%	36%	<0.0001

Functional Operability

- Age
- General health
- Performance status
- Smoking
- Cardiac Function
- Respiratory assessment (the "three-legged stool")
 - 1. Lung mechanical function
 - FEV1
 - 2. Lung parenchymal function
 - DLCO
 - ABG
 - 3. Cardiopulmonary reserve
 - CPET
 - Low cost alternatives
- Regional lung function

Age

- Advancing age increase risk
 - <70 yrs of age 4-7% mortality</p>
 - >70 yrs of age 14% mortality
- The comorbidities associated with advanced age responsible for this*
- Lung cancer pt should not denied lung resection on the ground of age alone.[^]
- When pneumonectomy is planned age should be consider#

*Smetana et al, N Engl J Med 1999;340(12):937-44

^Gene et al, CHEST 2007;132:161S-177S (ACCP Guideline)

BTS, Thorex 2001;56:89-108

General health

- Malnutrition (Alb <3 mg%)</p>
 - Reduce ventilatory derive to hypoxia & hypercapnia
 - Respiratory Ms dysfunction
 - Alters lung elasticity
 - Impair immunity
- Renal impairment(Blood urea >30 mg%)
 - Odd ratio of 2.3 for postoperative complication

Performance status

- American Society of Anesthesiologist Classification (I to V)
 - ASA III or Higher have 2.6 time post op complication than ASA I or II
- Karnofsky Index (100 to 0)
- ECOG-WHO Scale (o to 4)
 - Pt who are dependent, not candidate for Sx

Smoking

- Smoking increase the risk for post operative pulmonary complication.
- Carboxy Hb concentrations decrease if smoking is stopped
 >12 h†
- Significant risk reduction seen after >8 wks cessation.^
- Quit smoking before Sx lower the risk of complication.
- The longer the period of cessation, the greater the riskreduction*
- All smoker should be encouraged to quit smoking with appropriate treatment

[†] Akrawi et al, J Cardiothorac Vasc Anesth. 1997;11:629–40

[^] Conti et al, Minerva Chir 2002;57(3):317-21

^{*} Mills et al, Am J Med 2011;124(2):144-54

- Surgical Patients who Quit Smoking for
 - > 2 days

Decrease intra op ST changes

?>4wk

Decrease post op wound complications Decrease resp. complications of thoracic Sx

>8 wk

Decrease resp. complications of cardiac Sx

Cardiac Function: Revised Goldman Cardiac Risk Index

- 1. High-risk type of surgery
- 2. History of ischemic heart disease
 - a. History of myocardial infarction (within 6 months)
 - b. Positive exercise test
 - c. Current complaint of ischemic chest pain
 - d. Use of nitrate therapy
 - e. Pathologic Q waves on ECG

(Not included: prior coronary revascularization procedure unless one of the other criteria for IHD is present)

- 3. History of cardiac failure
- 4. History of cerebrovascular disease
- 5. DM requiring treatment with insulin
- 6. Preoperative serum creatinine >2.0 mg/dL
- Two or more variables: indicate a high risk and are associated with a postoperative cardiac complication rate of >10%.
- These pts needs evaluation and potential intervention by a cardiologist

Respiratory assessment

1. Lung Mechanical Function

- Spirometry
 - FEV1 absolute value*

> o.6 L low risk for segmentectomy

> 1.5 L low risk for a lobectomy

> 2.0 L low risk for a pneumonectomy

- But absolute value does not consider patient related variables (age, sex, height)
- FEV1 >80% or > 2L and without e/o SOB/ILD can be considered for pneumonectomy without further testing.^

*Boushy et al, Chest 1971;59:383-91
Wernly et al, J Thorac Cardiovasc Surg 1980;80:535-43
^Colice et al (ACCP), Chest 2007;132(S3):161-177

2. Lung Parenchymal function

DLCO

- Reflects alveolar capillary membrane integrity and blood flow in the patient's lungs
- ACCP- If e/o SOB or ILD even FEV1 >80% or >2L.
- ERS/ESTS/BTS- DLCO in all pts regardless of FEV1
- If either of FEV1 or DLCO are<80%, peak VO2 assessed by CPET.
- DLCO *
 - < 80% pred associated with ↑ po complications,</p>
 - < 60% pred associated with ↑ mortality</p>

* Ferguson et al, Ann Thorac Surg 2008; 85(4):1158-64

ABG

- SaO2 < 90% increase risk of perioperative complications*
- Historically PaCO2 >45mmHg was considered exclusion criteria for lung resection as it was associated with poor ventilatory function^
- PaCO2 >45 mmHg is not an independent risk for perioperative complications*

```
^BTS, Thorex 2001;56:89-108
```

[^] Celli et al, Med Clin North Am 1993; 77:309-25

[^] Zibark et al, Ann Intern Med 1990; 112:763-71

^{*} Colice et al (ACCP), Chest 2007;132(S3):161-177

3. Cardiopulmonary reserve

- CPET
- Low cost alternatives
 - Stair Climbing
 - Shuttle walk
 - 6 MWT

CPET

- Exercise = Work performed by Sk Ms
- Amount of O2 consumed = amount of work done

(Body has limited capacity to store O2)

$$VO_2 = (VI \times FiO_2) - (VE \times FeO_2)$$

$$VO2 = C.O. x (a-v) O2 content$$

Resting VO2 = 3.5 ml/min/kg = One Metabolic equivalent (MET)

Energy consumption in various activities

Activity	METS
Sitting quietly	1
Walking 1 block	2
Playing the accordion	2
Climbing 1 flight stairs	4
Sexual intercourse a	6
Bowling a	8
Ice Hockey	8
Running 6 mph	10
Cross country ski racing	14

1 MET = basal oxygen consumption = 3.5 mL/kg/min

- VO2 max
 - VO2 that remains invariant despite increment in workload after AT VO2.
 - (< 1ml/min/kg difference for > 30 seconds)
- AT VO2 (Anaerobic Threshold)
 - Critical level of work at which lactic acidosis develop
 - VCO2 and VO2 cross over take place due to
 - (1) a disproportionate rise in VCO2, VE, or R relative to VO2
 - (2) a disproportionate rise in end-tidal O2 relative to end-tidal CO2

- Moderate Exercise
 - Exercise below AT VO2
 - Can be continued for prolong period without discomfort or fatigue
- Heavy Exercise
 - Exercise above AT VO2
 - Can not be sustained for prolong period

CPET

- Safe but not without risk
- Serious complication during test 1-5/10000*
- Absolute C/I to max exercise
 - Acute infectious illness
 - Instability of cardiac rhythm or hemodynamics
 - Temporal proximity to acute MI
 - Decompensated state of chronic diseases

*Arena et al, Circulation 2007;116:329-43

- If FEV1 or DLCO < 80% predicted Peak VO2 is recommended
- Peak VO2 Normal value*
 - Male = Ht in cm Age in yr x 21
 - Female = Ht in cm Age in yr x 14
- LLN = 83% of predicted

Peak VO2

- >20 ml/kg/min or > 75%
 - Allow resection up to pneumonectomy
- <10 ml/kg/min or < 35%</p>
 - Usually not recommended any resection
- 10-20 ml/kg/min or 35-75%
 - Subjected to Regional lung function (ppo)

Low Cost Alternatives of CPET

- Stair Climbing
 - Widely used and validated as a surrogate of CPET.
 - 3 flights of stairs (12 meters Ht)
 - FEV1 > 1.7 L
 - Suitable for lobectomy
 - 5 flights of stairs (20 meters Ht)
 - FEV1 > 2 L
 - VO2 max >20 ml/kg/min
 - Suitable for pneumonectomy

Bolton et al, Chest 1987;92:783-87 Brunelli et al, Chest 2002;121:1106-10

- Speed of ascent also showed linear correlation with VO2 max*
 - Ascent @ 15 m/min = VO2 max 20ml/kg/min
 - Ascent @ 12 m/min = VO2 max 15ml/kg/min
- Limitations
 - Not a standardized
 - Duration, speed of ascent, steps per flight, height of each step very

Shuttle walk

- Patient walk back and forth b/w two markers set
 10 m apart.
- Walking speed increase with each min
- End of Test: When pt is too breathless to maintain required speed

- < 25 shuttles = Peak VO2 <10 ml/kg/min*</p>
- But prospective studies failed to validate this test^

*Singh et al, Thorex 1992;47:1019-24

^Win et al, Eur J Cardiothorac Surg 2004;26(6):1216-19

^Win et al, Thorex 2006;61(1):57-60

6MWT

- Rest for 10 min
- Record baseline SOB on Borg Scale (1 -10)
- Walk at comfortable pace to complete 60 m lap
- Post walk Borg Scale
- Record total distance walked over 6 min
- Interpretation is not standardized*

Regional lung function

- Bronchospirometry
- Pulmonary Hemodynamics
- Qualitative CT (Segment Method)
- Perfusion SPECT
- Quantitative CT
- Dynamic Perfusion MRI
- Vibratory Response Imaging (VRI)

Bronchospirometry

- Double lumen catheter is passed in the trachea under fluoroscopy
- One lumen open in LMB other in Trachea for RMB.
- R & L Lung isolated and Spirometry of both lung recorded separately.
- Invasive test no longer performed as better non invasive test are available.

Pulmonary Hemodynamics

- Temporary occlusion of pul artery at rest & exercise
- It simulate "Physiological Pneumonectomy"
 - Growth in pressure ↑ post OP risk & complications*
 - Pul artery pressure >35mmHg Pt is inoperable^
 - PaO₂ < 45 mmHg
- Currently this is rarely used
 - Invasive
 - Complex
 - Noninvasive test have equal or superior efficacy

*Gass et al, Chest Jan 1986;89(1):127-35

^Olsen et al, Am Rev Respir Dis April 1975;111(4):379-87

Qualitative CT

- Anatomic Calculation
 - Old, tested and simple
 - Reliable predictor of ppo lung function*
 - But can overestimate the extent of functional loss
 - Collapsed, destroyed or emphysematous lung resected with little functional loss.
- 19 lung segment method
- 42 lung sub segment method

19 lung segment method ppo lung function

= Pre OP Lung function
x 19-A/19

Or

= Pre OP Lung function
x (19-B)-A/19-B

A= No. of seg to be resected

B= No. of nonfunctional seg

42 lung sub segment method

ppo lung function

= Pre OP Lung function x 42-A/42

A= no. of sub segments to be resected

Perfusion SPECT

- Used to be gold standard in assessing regional lung function
- Using iv technetium-99 micro aggregated albumin
- Isotope taken up by lung
- Images obtained by gamma camera

(SPECT-single photon emission computed tomography)

- % of radioactivity correlated with lung function
- Perfusion scan offer a good prediction of ppo lung function
- No additional benefit of doing ventilation scan*

ppo FEV1 =

Pre OP FEV1 x Total lung vol radioactivity - radioactivity in ROI to be resected/ Total lung vol radioactivity

Anterior

Posterior

Quantitative CT

- After empirical scan delay of 20 s b/w contrast & scan
- CECT Chest during breath hold in full inspiration
- 5 mm slice reconstructed
- Dual thresholds of -500 and -910 H applied
- Quantitative assessment done with the help of software (Pulmo, Siemens)

- Areas excluded from functional lung volume
 - Emphysema (<-910 H)</p>
 - Air space loss(>-500 H)
 - Tumor related
 - Tumor it self
 - Post obstructive atelectasis
 - Tumor not related (eg.TB sequelae)
 - Fibrosis
 - Atelectasis
- FLV (between -500 & -910 H)

Quantitative CT scan
Functional lung:
 b/w -500 & -910 H (red),
Emphysema:
 <-910H(black)
Air space loss:
 >-500 H(white)

ppo FEV1= pre op FEV1 x TFLV-RFLV/TFLV

TFLV = Total functional lung volume

RFLV = regional functional lung volume (Area to be resected)

Dynamic Perfusion MRI

- CEMRI calculate regional pulmonary blood volume
 - Patients receive 3–5 ml of gadopentetate dimeglumine @ 3-5 ml/s f/b 20 ml NS at same rate.
 - 25 images taken during 25 s breath hold in each acquisition.

- ROI delineated with the help of software in each slice of lung field. (RU,RM,RL,LU,LM,LL)
- Each patient 60 ROI
- Large vessels were excluded from ROI
 - ppo FEV1 = FEV1 x qMRI all lung field qMRI ROI/qMRI all lung field

VRI: Vibration Response Imaging

- Developed in 2001 by Dr. Igal Kushnir (Israeli Pediatrician)
- It use basic principle of stethoscope and amplifies into an objective and quantitative digital imaging of regional lung function
- It use the natural vibration energy generated by the body.

Air flow in bronchial tree

Turbulent vibration

Vibration altered by structural/functional changes of lung

Picked up by VRI at various location over the thoracic cage

- Comce et al done study on 25 pts in Turkey
- They compared VRI v/s Quantitative perfusion scintigraphy
- Strong correlation of VRI with Q scan for

```
    ppo FEV1% (r=0.87, p<0.001)</li>
    ppo FEV1 (r=0.90, pp<0.001)</li>
    ppo DLCO% (r=0.90, p<0.001)</li>
```

Correlation b/w VRI ppo FEV1 and Actual po FEV1

```
FEV1% (r=0.52, p=0.044)FEV1 (r=0.79, p<0.001)</li>
```

- VRI
 - Simple
 - Rapid
 - Cost effective
 - Noninvasive
 - Radiation free
 - Real time imaging
- But require validation in larger studies

- Ohno et al prospectively compare the utility of different modalities to assess ppo FEV1
- They compared ppo FEV1 with actul po FEV1 in 150 pts (87m & 63f) obtained by
 - Dynamic perfusion MRI
 - Quantitative CT
 - Qualitative CT (Seg Method)
 - Perfusion SPECT

Correlation of actual with predicted FEV1

```
Perfusion MRI (r=0.87, p<0.001)</p>
```

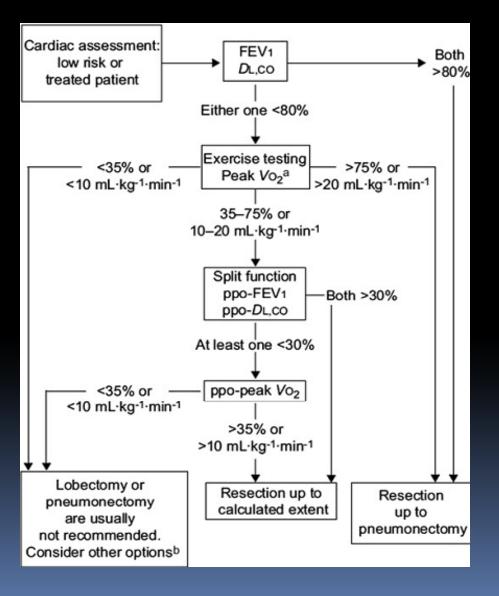
 Mean of difference and limits of agreement between actual and predicted FEV1 (mean ± 2SD)

Perfusion MRI
$$(5.3\% \pm 11.8\%)$$

Quantitative CT
$$(5.0\% \pm 11.6\%)$$

Perfusion SPECT
$$(5.1\% \pm 14.0\%)$$

- All four version of ppo FEV1 correlate well with actual po FEV1.
- Quantitative CT and perfusion MRI had better correlation than qualitative CT and perfusion SPECT
- Low risk surgical candidates
 - Go for
 - qualitative CT (Seg Method)
- High risk surgical candidate
 - Go for
 - quantitative CT/perfusion MRI/ perfusion SPECT


Conclusions

- Pt should not denied lung resection on the ground of age alone.
- Pt who are dependent, not candidate for Sx
- All smoker should be encouraged to quit smoking with appropriate treatment
- Patients with FEV1and DLCO >80% with no e/o SOB/ILD → Sx up to pneumonectomy without undergoing other tests
- FEV1 or DLCO <80% → CPET or Stair climbing</p>

- Peak VO2 >20ml/kg/min or >75% → Sx up to pneumonectomy
- Peak VO2 <10ml/kg/min or < 35% → Sx not recommended</p>
- Peak VO2 10-20ml/kg/min or 35-75% → ppo FEV1 & ppo DLCO by Regional lung function
- Regional lung function
 - Low Sx risk → qualitative CT (Seg Method)
 - High Sx risk → quantitative CT/perfusion MRI/ perfusion SPECT

- ppo FEV1 & ppo DLCO >30% → Sx up to calculated extend
- ppo FEV1 or ppo DLCO <30% → ppo peak VO2 by Regional lung function
- ppo VO2 >1oml/kg/min or >35% → Sx up calculated extend
- ppo VO2 <10ml/kg/min or <35% → Sx not recommended</p>

Algorithm: The Assessment of Pulmonary Resection

DLCO
ACCP- Pts having e/o DOE or
ILD
ERS/ESTS- all pts

^a If peak VO₂ is not available, CPET can be replaced by stair climbing

Brunelli et al. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients.

Eur Respir J 2009;34(1):22